正畸治疗中牙槽骨骨开窗骨开裂的预防和应对策略(下)
正畸治疗中牙槽骨骨开窗骨开裂的预防和应对策略(下)
04
正畸过程中骨开窗、骨开裂的预防
part two
正畸治疗中预防牙槽骨骨开窗、骨开裂的思路主要包括以下4点:
了解不同错𬌗畸形类型的牙槽骨解剖学特点,普及对正畸就诊人群治疗前 CBCT 的检查,帮助正畸医生尽可能发现患者先天存在的骨开窗、骨开裂和菲薄牙槽骨;
把握正畸治疗的界限,避免超出界限的正畸掩饰性治疗,必要时选择正颌手术治疗或牺牲一定的美学要求;
选择合适的正畸方式,控制牙根的移动;
通过手术植骨的方式增加牙槽骨骨量,拓宽牙齿移动的界限,治疗已有的牙槽骨骨开窗、骨开裂或预防可能出现的牙槽骨缺损。
0
1
把握正畸治疗的界限
尽管牙槽骨的改建是实现正畸牙齿移动的基础,但在正畸牙齿移动的过程中,牙槽骨的重塑既不能即刻完成,也不能完全填补牙齿移动后产生的骨损失。
Vardimon 等[33]通过测量上颌中切牙根尖点和上齿槽座点(A点) 相对于蝶鞍点和前颅底平面的移动距离,结果发现:在内收上前牙的过程中,无论是倾斜移动还是转矩移动,A点的移动方向与根尖点一致,但其移动距离约为根尖点移动距离的1/2,因此,推断出骨重塑/牙齿移动的比率大约为1∶2,即在内收上前牙过程中根尖区牙槽骨的改建量约为根尖移动量的一半。
当以1∶2的骨重塑/牙齿运动比率作为指南时,牙根向唇舌侧移动的距离不应超过治疗前唇舌侧牙槽骨厚度的2倍,以避免出现根尖区的骨开窗。
研究[34]提示:下颌前磨牙、磨牙横向扩展 >3 mm 即可加大牙根超出牙槽骨的风险,下切牙唇向移动 >2 mm 可增加骨开裂和牙龈退缩的概率。
正畸治疗中患者牙齿移动受到基骨的限制,对于骨性错𬌗畸形患者,正畸治疗只能通过牙齿的代偿移动来掩饰颌骨的缺陷,一定程度上获得面部美学上的改善,但对于严重的骨性错𬌗畸形患者,正畸掩饰性治疗意味着更大范围的牙齿移动和倾斜,极大地增加了牙槽骨骨开窗和骨开裂的风险。
对于骨性Ⅱ类错𬌗畸形的患者,通常当患者 ANB 角大于5°时,医生便应当考虑正颌手术而非一味采取正畸掩饰性治疗[35]。赵志河等[36]对这类患者提出了更详细的正畸治疗界限:若覆盖超过 10 mm,则难以通过拔除2颗前磨牙内收前牙来达到正常的覆盖;若颏前点至鼻根点垂线的距离大于 18 mm,且下切牙前突,则正畸掩饰亦难以达到满意的效果;过短的下颌体即下颌角点至颏前点距离小于 70 mm,或是过高的面长即鼻根点至颏下点的距离大于 125 mm,也应当选择正颌手术治疗。
对于骨性 Ⅲ 类错𬌗畸形患者,Kerr等[37]指出:当ANB角小于-4°,L1-MP角(下中切牙长轴与下颌平面相交之上内角) 小于 83°时,则应当采取正颌手术治疗而非正畸掩饰性治疗。此外,对于严重上颌前突或上牙槽前突合并露龈笑者以及偏颌掩盖反𬌗的患者,在选择正畸掩饰性治疗时应当审慎[36]。
0
2
选择合适的正畸方式,控制牙根的移动
对于牙列拥挤的患者,仅通过扩张牙弓而非拔牙或邻面去釉来排齐牙列可能增加牙槽骨骨开窗、骨开裂的风险。Morais 等[38]对 18 名上颌拥挤度大于 4 mm 的青少年患者(年龄11~17岁) 采取直丝弓非拔牙矫治,结果显示:患者均出现牙弓扩张和牙齿的倾斜,在上颌中切牙唇侧和上颌第一磨牙近中颊根均观察到了明显的牙槽骨高度和厚度的丧失,治疗前较薄的颊侧牙槽骨厚度和严重的拥挤度都增加了颊侧牙槽骨丢失的风险。
对于上颌前突或双颌前突的患者,通过拔牙内收前牙亦有引起前牙区牙槽骨丧失的风险。Domingo-Clérigues 等[28]回顾了多篇拔牙后内收上颌前牙的研究,结果发现:拔牙内收上颌前牙后,上中切牙颈部的牙槽骨厚度明显增加,而腭侧牙槽骨厚度变化则存在较大的异质性。
Zhang 等[39]对36名双颌前突的患者进行拔牙矫治,结果发现:内收前牙后,舌侧的牙槽骨厚度和垂直高度均有明显减小,且下颌切牙舌侧的牙槽骨变化比上颌切牙更加明显。
在内收前牙过程中,施加于牙齿上的冠根倾斜的力矩会加重牙根移向薄弱的唇侧骨板,单纯的冠根倾斜移动,上切牙根尖向唇侧骨密质移动的距离约为切端内收移动距离的1/2[33],而在转矩移动中,上切牙根尖向腭侧骨密质移动,因此,在内收前牙时通常施加大小相等、方向相反的抵抗力矩,通过合理分配倾斜移动和转矩移动以获得控根的效果[40],避免牙根向牙槽骨薄弱部位过度移动而导致骨开窗和骨开裂的发生。
临床实践[41-42]表明:内收上前牙时使用长牵引钩或者使用控根辅弓,能够有效控制前牙转矩,预防可能出现的骨开窗、骨开裂。对于大量内收的双颌前突患者,控制内收力的大小,采用弹性橡皮圈施加约 0.98 N的轻力相较链状橡皮链施加约 2.45 N的中等力,具有更好的控根效果[43]。
RME 主要通过腭中缝的扩开和上颌磨牙的颊向移动实现,为了预防可能出现的磨牙颊侧牙槽骨骨开窗、骨开裂的发生,建议选择牙-黏膜组织联合支持式扩弓器或牙-骨组织联合支持式扩弓器。
研究[44-46]表明:不同的 RME 装置对磨牙的影响存在差异,单纯的牙支持式扩弓器相比牙-黏膜组织联合支持式扩弓器对上颌磨牙的影响更大,更易引起支持牙的颊倾和牙槽骨骨开裂。Copello 等[47]的研究发现:相比常规快速扩弓器,小型种植体辅助快速扩弓能在一定程度上减少后牙颊侧牙槽骨的丢失。
Moon 等[48]比较了上颌骨骨性扩弓(maxillary skeletal expansion,MSE) 装置和C型扩弓器对上颌磨牙颊侧牙槽骨的作用,结果发现:MSE 扩弓器比C型扩弓器引起了更多支持牙的颊倾,以及颊侧牙槽骨高度和厚度的减少,同时,MSE 扩弓器治疗过程中骨开裂的发生率也更高。
此外,LaBlonde 等[49]在对采用四带环 Hyrax 矫治器进行快速扩弓治疗的研究中发现:尽管更大的激活率能带来更明显的骨性扩弓效应,但也造成了更多的磨牙颊倾和颊侧牙槽骨厚度丧失。
0
3
4.3 手术植骨方式增加牙槽骨骨量
如正畸治疗前已经存在骨开窗或骨开裂,可以选择在骨开窗、骨开裂部位先行引导骨组织再生术(guided bone regeneration, GBR) 或植骨术,再进行正畸治疗[35]。也可以选择在正畸过程中应用牙周加速成骨正畸(periodontally accelerated osteogenic orthodontics,PAOO) 技术。
PAOO 技术由一些学者[50-51]在骨密质切开辅助正畸治疗技术(corticotomy-assisted orthodontic treatment,CAOT) 的基础上,行骨密质切开的骨表面植入骨粉、骨膜,以期在加快牙齿移动的同时增加骨量,拓宽牙齿移动的界限。
随着 PAOO 技术的逐步成熟和在临床上的广泛应用,已有研究[52-53]显示:PAOO 技术可以在一定程度上增加牙槽骨厚度,从而预防或改善正畸过程中可能出现的牙槽骨骨开窗和骨开裂。
单纯行骨密质切开术而不进行植骨,依然存在较高的牙槽骨骨开窗、骨开裂的风险[54]。Wang 等[55]对 28 名需要进行正颌手术的患者在术前正畸时行下前牙 PAOO 手术,相比 30 名常规术前正畸的患者,进行 PAOO 的患者下前牙失代偿量及唇侧牙槽骨厚度均大于常规组,且其舌侧牙槽骨厚度的减少量、近远中及舌侧的垂直高度丢失量均小于常规组。
Ahn 等[56]对 30 名需要行正颌手术的骨性Ⅲ类错𬌗畸形患者行术前正畸,其中,行下颌前牙区 PAOO 的实验组患者,下切牙失代偿过程中牙槽骨的垂直高度没有明显丧失,且根中及根尖水平的牙槽骨厚度增加,唇侧牙槽骨面积增加,而对照组的患者下切牙区牙槽骨高度、牙槽骨厚度和唇侧牙槽骨面积均有明显丧失。
但是也有学者[57]提出:PAOO 术后仍然有可能出现较高频率的骨开窗和骨开裂,这可能与治疗方案有关。
05
牙槽骨骨开窗、骨开裂的治疗
part five
应用 PAOO 技术可以治疗正畸患者先天存在的牙槽骨骨开窗和骨开裂,并预防新的骨开窗、骨开裂发生。此外,随着人造骨膜、骨粉材料的不断革新,GBR 在临床中的应用日趋成熟,目前已经成为修复牙槽骨缺损的一项重要技术。
GBR 技术是利用膜性材料作为屏障,联合移植材料,从而为成骨细胞迁移分化和新骨形成提供条件[58]。
尽管在恢复垂直骨缺损和严重水平骨缺损方面,现有的 GBR 技术仍然存在许多困难,但其在促进骨的新生、修复缺损牙槽骨方面已经取得了一系列成效[59]。已有研究[60-61]报道:在出现骨开窗和骨开裂的种植体周围行GBR,能够有效改善已经发生的骨开裂和骨开窗。
骨开窗和骨开裂导致牙槽骨缺损部位牙根面仅覆盖骨膜和牙龈,更易伴发牙龈退缩和附着水平丧失[62],而充足的牙周软组织又是保障硬组织增量手术效果的前提[63],因此,牙周软组织评估也应纳入骨开窗、骨开裂预防策略的综合考量。
对于正畸前已存在牙周软组织不足且菌斑控制不佳的患者,应在正畸前进行软组织增量手术,对于局部牙槽骨菲薄且正畸移动存在较大骨开窗、骨开裂风险的部位,则需考虑在正畸前增加软组织厚度。Kim 等[64]提出:当角化龈宽度 <2 mm时,应在正畸前进行软组织增量手术。
常见的软组织增量手术包括带蒂瓣技术及游离软组织技术,后者包括游离龈移植术(free gingival graft,FGG)和结缔组织移植(connective tissue graft,CTG)[63]。
自体牙骨移植材料(autogenous tooth bone graft material,AutoBT) 是近年来对自体骨移植材料的一种补充,AutoBT通常来自于患者自身拔除的第三磨牙或正畸牙,取牙本质制备成所需大小的粉末或颗粒,既可以即刻椅旁制备,又可以常温保存 5 年,液氮保存 10 年以上[65],这对于通常需要拔除第三磨牙或前磨牙的正畸患者,无疑是一个值得期待的自体骨移植材料来源。
临床试验[66-67]显示:AutoBT 在拔牙后植骨中的临床效果与异种骨移植物的效果相当。AutoBT 有望在今后应用于正畸患者骨开窗、骨开裂的预防与治疗。
新兴的组织工程技术也有可能将来应用于治疗骨开窗和骨开裂。利用具有成骨分化潜力的种子细胞[68],如牙囊干细胞(dental follicle stem cell,DFSC)、牙周膜干细胞(periodontal ligament stem cell, PDLSC)、牙髓干细胞(dental pulp stemcell,DPSC)、骨髓间充质细胞(bone mesenchymal stem cell,BMSC) 等,在成骨诱导因子作用下,复合生物支架材料用于修复骨缺损,或是在生物支架材料中复合细胞趋化因子,诱导干细胞的迁移和分化,修复局部的骨缺损[69]。
尽管在获取种子细胞过程中有诸多伦理学限制,且目前对细胞归巢机制的研究还有许多尚待解决的问题,但组织工程技术仍为解决临床牙槽骨骨开窗、骨开裂提供了新的路径。
小结
牙槽骨的骨开窗和骨开裂在天然牙中的发生频率较高,并且可能因为正畸治疗而人为产生或加重。CBCT 对于骨开窗和骨开裂的诊断具有一定意义,合理利用初诊时的 CBCT 检查能够帮助正畸医生在正畸治疗开始前就发现患者先天存在的骨开窗、骨开裂以及牙槽骨菲薄的牙位,从而在整个正畸治疗过程中对牙齿移动进行有效的管理和控制,避免出现新的牙槽骨缺损或是导致原有的骨开窗、骨开裂更加严重。
避免过度的正畸掩饰性治疗,加强对牙齿转矩的控制是正畸治疗中避免出现牙槽骨骨开窗、骨开裂的有效手段,而 PAOO 技术的应用能够在一定程度上拓展正畸治疗的界限,预防牙槽骨的缺损,已成为一种有效的预防手段。
尽管 GBR 技术对已经发生的严重的骨开窗、骨开裂有一定治疗作用,自体牙移植材料、组织工程技术也具有广阔的应用前景,但对于正畸医生来说,从诊疗开始就将牙槽骨骨开窗、骨开裂纳入风险管理仍是十分必要的。
参考文献(上下滑动查看):
[1] 邓建清, 吴莉萍. 骨开窗和骨开裂与正畸治疗[J].临床口腔医学杂志, 2016, 32(7): 445-447.
Deng JQ, Wu LP. Alveolar bone dehiscence and fenestration and orthodontic treatment[J]. J Clin Stomatol, 2016, 32(7): 445-447.
[2] Löst C. Depth of alveolar bone dehiscences in relation to gingival recessions[J]. J Clin Periodontol, 1984, 11(9): 583-589.
[3] Sendyk M, Linhares DS, Pannuti CM, et al. Effect of orthodontic treatment on alveolar bone thickness in adults: a systematic review[J]. Dental Press J Orthod, 2019, 24(4): 34-45.
[4] Gorbunkova A, Pagni G, Brizhak A, et al. Impact of orthodontic treatment on periodontal tissues: a narrative review of multidisciplinary literature[J]. Int J Dent, 2016, 2016: 4723589.
[5] Evangelista K, Vasconcelos Kde F, Bumann A, et al. Dehiscence and fenestration in patients with ClassⅠ and Class Ⅱ Division 1 malocclusion assessed with cone-beam computed tomography[J]. Am J Orthod Dentofacial Orthop, 2010, 138(2): 133.e1-e7.
[6] Grimoud AM, Gibbon VE, Ribot I. Predictive factors for alveolar fenestration and dehiscence[J]. Homo, 2017, 68(3): 167-175.
[7] Yagci A, Veli I, Uysal T, et al. Dehiscence and fenestration in skeletal Class Ⅰ, Ⅱ, and Ⅲ malocclusions assessed with cone-beam computed tomography[J]. Angle Orthod, 2012, 82(1): 67-74.
[8] Enhos S, Uysal T, Yagci A, et al. Dehiscence and fenestration in patients with different vertical growth patterns assessed with cone-beam computed tomography[J]. Angle Orthod, 2012, 82(5): 868-874.
[9] Porto OCL, Silva BSF, Silva JA, et al. CBCT assessment of bone thickness in maxillary and mandibular teeth: an anatomic study[J]. J Appl Oral Sci, 2020, 28: e20190148.
[10] Jin SH, Park JB, Kim N, et al. The thickness of alveolar bone at the maxillary canine and premolar teeth in normal occlusion[J]. J Periodontal Implant Sci, 2012, 42(5): 173-178.
[11] Pilloni A, Rotundo R, Gambarini G, et al. Bone dehiscences and fenestrations of the anterior mandibular facial bone wall: a retrospective cone beam computed tomography study[J]. Minerva Stomatol, 2018, 67(3): 86-95.
[12] 周琳, 李巍然. 锥形束CT 在评价双颌前突患者前牙区牙槽骨缺损中的应用[J]. 北京大学学报(医学版), 2015, 47(3): 514-520.
Zhou L, Li WR. Evaluation of alveolar bone defects on anterior region in patients with bimaxillary protrusion by using cone-beam CT[J]. J Peking Univ (Health Sci), 2015, 47(3): 514-520.
[13] 孙良, 王博, 房兵. 骨性Ⅲ类错前牙区牙槽骨开裂和牙槽骨开窗发生率的锥形束CT研究[J]. 上海口腔医学, 2013, 22(4): 418-422.
Sun LY, Wang B, Fang B. The prevalence of dehiscence and fenestration on anterior region of skeletal Class Ⅲ malocclusions: a cone-beam CT study[J]. Shanghai J Stomatol, 2013, 22(4): 418-422.
[14] Hu X, Huang X, Gu Y. Assessment of buccal and lingual alveolar bone thickness and buccolingual inclination of maxillary posterior teeth in patients with severe skeletal Class Ⅲ malocclusion with mandibular asymmetry[J]. Am J Orthod Dentofacial Orthop, 2020, 157(4): 503-515.
[15] Choi JY, Chaudhry K, Parks E, et al. Prevalence of posterior alveolar bony dehiscence and fenestration in adults with posterior crossbite: a CBCT study[J]. Prog Orthod, 2020, 21(1): 8.
[16] Coşkun İ, Kaya B. Relationship between alveolar bone thickness, tooth root morphology, and sagittal skeletal pattern: a cone beam computed tomography study[J]. J Orofac Orthop, 2019, 80(3): 144-158.
[17] Eraydın F, Germec-Cakan D, Tozlu M, et al. Threedimensional evaluation of alveolar bone thickness of mandibular anterior teeth in different dentofacial types[J]. Niger J Clin Pract, 2018, 21(4): 519-524.
[18] Leung CC, Palomo L, Griffith R, et al. Accuracy and reliability of cone-beam computed tomography for measuring alveolar bone height and detecting bony dehiscences and fenestrations[J]. Am J Orthod Dentofacial Orthop, 2010, 137(4 Suppl): S109-S119.
[19] Peterson AG, Wang M, Gonzalez S, et al. An in vivo and cone beam computed tomography investigation of the accuracy in measuring alveolar bone height and detecting dehiscence and fenestration defects [J]. Int J Oral Maxillofac Implants, 2018, 33(6): 1296-1304.
[20] Kolsuz ME, Bagis N, Orhan K, et al. Comparison of the influence of FOV sizes and different voxel resolutions for the assessment of periodontal defects[J]. Dentomaxillofac Radiol, 2015, 44(7): 20150070.
[21] Bagis N, Eren H, Kolsuz ME, et al. Comparison of the burr and chemically induced periodontal defects using different field-of-view sizes and voxel resolutions [J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2018, 125(3): 260-267.
[22] 徐筱, 徐莉, 江久汇, 等. 锥形束CT 评判安氏Ⅲ类错上前牙骨开裂与骨开窗的准确性分析[J]. 北京大学学报(医学版), 2018, 50(1): 104-109.
Xu X, Xu L, Jiang JH, et al. Accuracy analysis of alveolar dehiscence and fenestration of maxillary anterior teeth of Angle class Ⅲ by cone-beam CT[J]. J Peking Univ (Health Sci), 2018, 50(1): 104-109.
[23] Sun L, Zhang L, Shen G, et al. Accuracy of conebeam computed tomography in detecting alveolar bone dehiscences and fenestrations[J]. Am J Orthod Dentofacial Orthop, 2015, 147(3): 313-323.
[24] Sheng Y, Guo HM, Bai YX, et al. Dehiscence and fenestration in anterior teeth: comparison before and after orthodontic treatment[J]. J Orofac Orthop, 2020, 81(1): 1-9.
[25] Garlock DT, Buschang PH, Araujo EA, et al. Evaluation of marginal alveolar bone in the anterior mandible with pretreatment and posttreatment computed tomography in nonextraction patients[J]. Am J Orthod Dentofacial Orthop, 2016, 149(2): 192-201.
[26] Handelman CS. The anterior alveolus: its importance in limiting orthodontic treatment and its influence on the occurrence of iatrogenic sequelae[J]. Angle Orthod, 1996, 66(2): 95-109.
[27] Gracco A, Lombardo L, Mancuso G, et al. Upper incisor position and bony support in untreated patients as seen on CBCT[J]. Angle Orthod, 2009, 79(4): 692-702.
[28] Domingo-Clérigues M, Montiel-Company JM, Almerich- Silla JM, et al. Changes in the alveolar bone thickness of maxillary incisors after orthodontic treatment involving extractions-a systematic review and meta-analysis[J]. J Clin Exp Dent, 2019, 11(1): e76-e84.
[29] Allais D, Melsen B. Does labial movement of lower incisors influence the level of the gingival margin? A case-control study of adult orthodontic patients[J]. Eur J Orthod, 2003, 25(4): 343-352.
[30] Baysal A, Uysal T, Veli I, et al. Evaluation of alveolar bone loss following rapid maxillary expansion using cone-beam computed tomography[J]. Korean J Orthod, 2013, 43(2): 83-95.
[31] Akin M, Baka ZM, Ileri Z, et al. Alveolar bone changes after asymmetric rapid maxillary expansion [J]. Angle Orthod, 2015, 85(5): 799-805.
[32] Camps-Perepérez I, Guijarro-Martínez R, Peiró-Guijarro MA, et al. The value of cone beam computed tomography imaging in surgically assisted rapid palatal expansion: a systematic review of the literature [J]. Int J Oral Maxillofac Surg, 2017, 46(7): 827-838.
[33] Vardimon AD, Oren E, Ben-Bassat Y. Cortical bone remodeling/tooth movement ratio during maxillary incisor retraction with tip versus torque movements [J]. Am J Orthod Dentofacial Orthop, 1998, 114(5): 520-529.
[34] Proffit WR, Fields HW, Sarver DM. Contemporary orthodontics[M]. 5th ed. St. Louis: CVMosby, 2014.
[35] Cassidy SE, Jackson SR, Turpin DL, et al. Classification and treatment of Class Ⅱ subdivision malocclusions [J]. Am J Orthod Dentofacial Orthop, 2014, 145(4): 443-451.
[36] 赵志河, 李雪. 正畸边缘病例矫治思考[J]. 中国实用口腔科杂志, 2013, 6(2): 65-70.
Zhao ZH, Li X. Thinking of treatment for orthodontic borderline cases[J]. Chin J Pract Stomatol, 2013, 6(2): 65-70.
[37] Kerr WJ, Miller S, Dawber JE. Class Ⅲ malocclusion: surgery or orthodontics[J]. Br J Orthod, 1992, 19(1): 21-24.
[38] Morais JF, Melsen B, de Freitas KMS, et al. Evaluation of maxillary buccal alveolar bone before and after orthodontic alignment without extractions: a cone beam computed tomographic study[J]. Angle Orthod, 2018, 88(6): 748-756.
[39] Zhang F, Lee SC, Lee JB, et al. Geometric analysis of alveolar bone around the incisors after anterior retraction following premolar extraction[J]. Angle Orthod, 2020, 90(2): 173-180.
[40] 曹显, 郑欣欣, 金幼虹, 等. 正畸治疗策略中牙周支持组织改建的风险考量[J]. 中华口腔医学杂志, 2020, 55(4): 271-275.
Cao X, Zheng XX, Jin YH, et al. Risk considerations of periodontal tissues reconstructions in the strategies of orthodontic treatment[J]. Chin J Stomatol, 2020, 55(4): 271-275.
[41] 孙留振. 长牵引钩对上颌中切牙控根效果的临床研究[J]. 临床口腔医学杂志, 2019, 35(5): 290-293.
Sun LZ. A clinical study on the effect of root controlling over upper incisor teeth with long traction hook[J]. J Clin Stomatol, 2019, 35(5): 290-293.
[42] 秦燕军, 顾月光, 刘可, 等. 控根辅弓对上颌切牙转矩疗效的临床研究[J]. 实用口腔医学杂志, 2014, 30(6): 787-791.
Qin YJ, Gu YG, Liu K, et al. A clinical study on the effect of maxillary incisor torque with controlling root auxiliary arch[J]. J Pract Stomatol, 2014, 30(6): 787-791.
[43] Li J, Zhao Y, Li H, et al. Effects of force magnitude on torque control in the correction of bimaxillary protrusion with mass retraction[J]. J Orthod Sci, 2018, 7: 13.
[44] Garib DG, Henriques JF, Janson G, et al. Periodontal effects of rapid maxillary expansion with tooth tissue-borne and tooth-borne expanders: a computed tomography evaluation[J]. Am J Orthod Dentofacial Orthop, 2006, 129(6): 749-758.
[45] Kılıç N, Kiki A, Oktay H. A comparison of dentoalveolar inclination treated by two palatal expanders [J]. Eur J Orthod, 2008, 30(1): 67-72.
[46] Lemos Rinaldi MR, Azeredo F, Martinelli de Lima E, et al. Cone-beam computed tomography evaluation of bone plate and root length after maxillary expansion using tooth-borne and tooth-tissue-borne banded expanders[J]. Am J Orthod Dentofacial Orthop, 2018, 154(4): 504-516.
[47] Copello FM, Marañón-Vásquez GA, Brunetto DP, et al. Is the buccal alveolar bone less affected by mini-implant assisted rapid palatal expansion than by conventional rapid palatal expansion? -A systematic review and meta analysis [J]. Orthod Craniofac Res, 2020, 23(3): 237-249.
[48] Moon HW, Kim MJ, Ahn HW, et al. Molar inclination and surrounding alveolar bone change relative to the design of bone-borne maxillary expanders: a CBCT study[J]. Angle Orthod, 2020, 90(1): 13-22.
[49] LaBlonde B, Vich ML, Edwards P, et al. Three dimensional evaluation of alveolar bone changes in response to different rapid palatal expansion activation rates[J]. Dental Press J Orthod, 2017, 22(1): 89-97.
[50] Wilcko WM, Wilcko T, Bouquot JE, et al. Rapid orthodontics with alveolar reshaping: two case reports of decrowding [J]. Int J Periodontics Restorative Dent, 2001, 21(1): 9-19.
[51] Murphy KG, Wilcko MT, Wilcko WM, et al. Periodontal accelerated osteogenic orthodontics: a description of the surgical technique[J]. J Oral Maxillofac Surg, 2009, 67(10): 2160-2166.
[52] Kim SH, Kim I, Jeong DM, et al. Corticotomy-assisted decompensation for augmentation of the mandibular anterior ridge [J]. Am J Orthod Dentofacial Orthop, 2011, 140(5): 720-731.
[53] Wang CW, Yu SH, Mandelaris GA, et al. Is periodontal phenotype modification therapy beneficial for patients receiving orthodontic treatment? An American Academy of Periodontology best evidence review[J]. J Periodontol, 2020, 91(3): 299-310.
[54] Brugnami F, Caiazzo A, Mehra P. Can corticotomy (with or without bone grafting) expand the limits of safe orthodontic therapy[J]. J Oral Biol Craniofac Res, 2018, 8(1): 1-6.
[55] Wang B, Shen G, Fang B, et al. Augmented corticotomy-assisted presurgical orthodontics of Class Ⅲ malocclusions: a cephalometric and cone-beam computed tomography study[J]. J Craniofac Surg, 2013, 24(6): 1886-1890.
[56] Ahn HW, Seo DH, Kim SH, et al. Morphologic evaluation of dentoalveolar structures of mandibular anterior teeth during augmented corticotomy-assisted decompensation[J]. Am J Orthod Dentofacial Orthop, 2016, 150(4): 659-669.
[57] Chackartchi T, Barkana I, Klinger A. Alveolar bone morphology following periodontally accelerated osteogenic orthodontics: a clinical and radiographic analysis[J]. Int J Periodontics Restorative Dent, 2017, 37(2): 203-208.
[58] Garcia J, Dodge A, Luepke P, et al. Effect of membrane exposure on guided bone regeneration: a systematic
review and meta-analysis[J]. Clin Oral Implants Res, 2018, 29(3): 328-338.
[59] Elgali I, Omar O, Dahlin C, et al. Guided bone regeneration: materials and biological mechanisms revisited [J]. Eur J Oral Sci, 2017, 125(5): 315-337.
[60] Rosen PS, Reynolds MA. Guided bone regeneration for dehiscence and fenestration defects on implants using an absorbable polymer barrier[J]. J Periodontol, 2001, 72(2): 250-256.
[61] Dahlin C, Lekholm U, Becker W, et al. Treatment of fenestration and dehiscence bone defects around oral implants using the guided tissue regeneration technique: a prospective multicenter study[J]. Int J Oral Maxillofac Implants, 1995, 10(3): 312-318.
[62] Sun L, Yuan L, Wang B, et al. Changes of alveolar bone dehiscence and fenestration after augmented corticotomy-assisted orthodontic treatment: a CBCT evaluation[J]. Prog Orthod, 2019, 20(1): 7.
[63] 束蓉. 正畸治疗与牙周软组织增量[J]. 中华口腔医学杂志, 2020, 55(7): 444-447. Shu R. Orthodontic treatment and periodontal soft tissue augmentation[J]. Chin J Stomatol, 2020, 55 (7): 444-447.
[64] Kim DM, Neiva R. Periodontal soft tissue non-root coverage procedures: a systematic review from the AAP Regeneration Workshop [J]. J Periodontol, 2015, 86(2 Suppl): S56-S72.
[65] 李冀寅, 贺平. 自体牙骨移植材料在牙槽骨缺损修复中的应用进展[J]. 口腔医学研究, 2019, 35(3): 212-214.
Li JY, He P. Clinical application progress of autogenous tooth bone graft material in repairing alveolar bone defect[J]. J Oral Sci Res, 2019, 35(3): 212-214.
[66] Wu D, Zhou L, Lin J, et al. Immediate implant placement in anterior teeth with grafting material of autogenous tooth bone vs xenogenic bone[J]. BMC Oral Health, 2019, 19(1): 266.
[67] Pang KM, Um IW, Kim YK, et al. Autogenous demineralized dentin matrix from extracted tooth for the augmentation of alveolar bone defect : a prospective randomized clinical trial in comparison with anorganic bovine bone[J]. Clin Oral Implants Res, 2017, 28(7): 809-815.
[68] Lindroos B, Mäenpää K, Ylikomi T, et al. Characterisation of human dental stem cells and buccal mucosa fibroblasts [J]. Biochem Biophys Res Commun, 2008, 368(2): 329-335.
[69] Thrivikraman G, Athirasala A, Twohig C, et al. Biomaterialsfor craniofacial bone regeneration[J]. Dent Clin North Am, 2017, 61(4): 835-856.
*本文来源于网络
作者:周梦琪 陈学鹏 傅柏平.国际口腔医学杂志, 2021, 48(5): 600-608. doi: 10.7518/gjkq.2021082.